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a b s t r a c t

The ability to control the focus of attention relies on top-down modulation of cortical activ-
ity in areas involved in stimulus processing, and this ability is critical for maintaining items
in working memory in the presence of distraction. Prior research demonstrates that chil-
dren are less capable of focusing attention, relative to adults, and that this ability develops
significantly during middle childhood. Here, using fMRI and a face/scene working mem-
ory task adapted from Gazzaley et al. (2005a,b), we compared top-down modulation in 15
children (aged 8–13) and 15 young adults (aged 19–26). Replicating prior results, in young
adults, attention to scenes modulated activity in the parahippocampal place area (PPA). In
addition, modulation of PPA activity increased as a function of age in children. PPA activity

was also related to performance in this group, on the working memory task as well on a
test of subsequent memory. Dorsolateral PFC also demonstrated increasing task-specific
activation, as a function of age, in children. The present findings support the idea that chil-
dren’s reduced ability to maintain items in working memory, especially in the presence
of distraction, is driven by weaker top-down modulation of activity in areas involved in
stimulus processing.
. Introduction

Working memory, the capacity to maintain and
anipulate information, particularly in the presence

f distraction, depends critically on attentional control
Baddeley, 1998). In fact, the contents of working memory

an be conceptualized as active internal representations
aintained within the focus of attention (Cowan, 1995),

nd this viewpoint is supported by neuroimaging stud-
es that have identified a mechanistic overlap between
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attention and working memory (Awh and Jonides, 2001).
The ability to control the focus of our attention allows
us to maintain in working memory those aspects of the
environment that are relevant to our goals, and to devote
fewer resources to processing environmental cues that
are not goal-relevant. This ability waxes and wanes over
the lifespan; indeed, in both children (Harnishfeger and
Bjorklund, 1994) and older adults (Hasher and Zacks, 1988),
the ability to maintain relevant information in working
memory is hindered by suboptimal selective attention.
Prior research on the development of working memory
has demonstrated that the ability to maintain items in the

absence of distraction, and the neural substrates of this
ability, are established very early in childhood (Diamond
et al., 1994). However, there is protracted development of
working memory, into adolescence and even adulthood, as
it involves large item loads, manipulation of items, or main-
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tenance in the presence of distraction (Luna et al., 2004;
Scherf et al., 2006; Geier et al., 2009). For recent reviews
of this literature, see Bunge and Wright (2007) and Luna
et al. (2010). Protracted development of attentional control
is likely to be a major cause of the protracted development
of working memory.

There is strong neurophysiological evidence that atten-
tional control is mediated by top-down (or goal-based)
modulation of activity in brain regions involved in stim-
ulus processing (Desimone and Duncan, 1995; Miller
and Cohen, 2001). This evidence comes from single-cell
physiology (Moran and Desimone, 1985), electroen-
cephalography (Hillyard et al., 1973), and neuroimaging
(Corbetta et al., 1990; Pessoa et al., 2003). This body of
research has demonstrated that activity in cortical regions
involved in the representation of particular classes of stim-
uli increases as a result of top-down shifts of attention
toward the relevant stimulus class. This mechanism of top-
down modulation supports working memory, as well as
attention, by favoring the effective encoding of relevant
information (Rainer et al., 1998; Ploner et al., 2001; Vogel
et al., 2005). Numerous studies have implicated frontal and
parietal regions in top-down attentional control (Pessoa
et al., 2003). Lateral prefrontal cortex (PFC), in particular,
has been linked to selective attention tasks where rele-
vant and irrelevant stimuli compete for attention (Rossi
et al., 2009; Iba and Sawaguchi, 2003; Everling et al.,
2002).

Gazzaley, D’Esposito, and colleagues have previously
demonstrated that younger adults exhibit enhanced acti-
vation of relevant visual association areas in response to
stimuli to be maintained in working memory, and reduced
activity in response to distracting stimuli (Gazzaley et al.,
2005a,b). In addition, they have demonstrated the func-
tional relevance of these activation changes for working
memory performance. Their work has focused on the top-
down modulation of activation in two brain regions: the
fusiform face area (FFA) and the parahippocampal place
area (PPA). FFA has been identified as a region that is par-
ticularly sensitive to the observation of faces (Kanwisher
et al., 1997). PPA, by contrast, has been shown to be partic-
ularly sensitive to the observation of buildings and outdoor
scenes (Epstein and Kanwisher, 1998).

Gazzaley and colleagues sought to test whether acti-
vation in these brain regions that process faces or scenes
would be modulated by instructions to attend to either
of these stimuli. In the face-scene working memory task,
participants were instructed to view a sequence of four
images: two faces and two scenes. Following a delay, they
viewed a probe stimulus and indicated whether or not it
matched one of the target items. In the “Attend Face” con-
dition, they were instructed to attend only to the faces, as
they would always receive a face stimulus as a probe. Like-
wise, in the “Attend Scene” condition, participants were
instructed to attend only to the scenes, as they would
always receive a scene stimulus as a probe. In the “Passive

View” condition, they were instructed to passively view the
stimuli, as they would never be asked to make a recogni-
tion memory judgment at the end of the trial, but rather
to respond to a leftward or rightward arrow stimulus by
pressing one of two buttons.
ve Neuroscience 1 (2011) 175–186

Within the right FFA, the instruction to attend to faces
produced increased activation during cue presentation rel-
ative to passive viewing. Similarly, within the PPA, the
instruction to attend to scenes produced increased cue-
related activation relative to passive viewing. Gazzaley
et al. argued that these effects result from top-down atten-
tional enhancement. In the PPA, the researchers also found
evidence of reduced activation when participants were
asked to attend to the faces as compared with passive view-
ing. Gazzaley et al. argued that these effects result from
top-down attentional suppression. Further, they showed that
a region in left lateral PFC was highly correlated with
PPA during attention to scenes, and that the strength of
this coupling correlated with the magnitude of attentional
modulation in PPA, suggesting that this region biases activ-
ity levels in PPA (Gazzaley et al., 2007).

In a follow-up study, Gazzaley and colleagues used the
same fMRI paradigm to examine selective attention in older
adults, aged 60–72 (Gazzaley et al., 2005a,b). Compared
to younger adults, older adults demonstrated diminished
modulation of PPA. This difference was driven by reduced
suppression of activity associated with irrelevant infor-
mation; specifically, older adults did not show reduced
activation of left PPA for “Attend Face” relative to “Passive
View” trials. Enhancement of activity associated with rel-
evant information (“Attend Scene” > “Passive View”) was
similar in older and younger adults. This inability to sup-
press activation of left PPA was correlated with impaired
performance on the working memory task. These results
supported the “inhibitory deficit hypothesis” (Hasher and
Zacks, 1988), suggesting that age-related decline in work-
ing memory capacity may be driven specifically by decline
in the ability to suppress irrelevant information.

Here, we sought to use the same fMRI paradigm to assess
the effectiveness of top-down attentional modulation in
children, both in terms of its neural signature as well as
its consequences for performance. There is a rich behav-
ioral literature showing that children experience greater
interference from distracters than do young adults, which
affects their performance on tasks that present compet-
ing stimuli (Bjorklund and Harnishfeger, 1990; Ordaz et al.,
2010). Given the parallels between the behavioral find-
ings for children and older adults, we posited that children,
like older adults, would demonstrate reduced modulation
of visual association areas. Previous studies have demon-
strated that attentional control improves over the course
of middle childhood (Rueda et al., 2004), and that children,
relative to adults, show reduced activation in frontal and
posterior brain regions associated with attentional control
(Konrad et al., 2005). Similar changes have been observed
with respect to working memory and interference con-
trol, with age-related improvements in performance and
changes in brain activation, particularly in lateral PFC and
posterior parietal cortex during task performance (Kwon
et al., 2002; Olesen et al., 2007; Velanova et al., 2009; Luna
et al., 2010). However, it is not yet known whether children

exhibit reduced modulation of visual association areas rela-
tive to young adults during performance of a task requiring
selective attention to visual stimuli.

Although FFA and PPA continue to mature through
childhood and adolescence (Golarai et al., 2007, 2010),
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ig. 1. A depiction of the experimental task, with sample stimuli. There
cenes and ignore faces), and Passive (passively view stimuli).

hese regions can be identified reliably in young children
sing functional localizer tasks (Scherf et al., 2007). Here
FA and PPA were isolated in each subject by means of
simple localizer task involving separate presentation of

aces and scenes. For evidence of top-down modulation,
e looked for increased activation in PPA for Scene rela-

ive to Face trials, and for increased activation in FFA for
ace relative to Scene trials. The status of activity during
assive trials in each brain region helps to clarify whether
odulation is mainly due to enhanced processing of the

o-be-attended stimuli, reduced processing of the to-be-
gnored stimuli, or both.

. Materials and methods

To examine top-down attentional modulation in chil-
ren, we collected fMRI data from children and young
dults as they performed a task that we adapted from the
ask used by Gazzaley et al. (2005a,b, 2008) for use in chil-
ren.

.1. Participants

Data from 15 typically developing children aged 8–13
6 males, 11.5 ± .43) and 15 young adults aged 19–26 (8

ales, 21.9 ± 2.3) were included in the analyses. Each age
etween 8–13 and 19–26 was represented in the sam-

le. An additional two adults participated in the study,
ut were excluded from analysis due to technical diffi-
ulties. An additional seven children were excluded from
he study: six because of excessive head movement, and
ne for failing to follow the task instructions. All children
ree task conditions: Face (attend faces and ignore scenes), Scene (attend

and adults were recruited from the Davis and Sacramento
areas. Participants were compensated $10 per hour for
their participation. Informed consent was acquired from
all participants in accordance with the Institutional Review
Board at the University of California at Davis or the Com-
mittee for Protection of Human Subjects at the University
of California at Berkeley.

2.2. Experimental task

Participants were scanned while performing three dif-
ferent 40-trial task blocks across three 7.8-min scanning
runs (see Fig. 1). Run order was counterbalanced across
participants and between groups. Before each scanning
run, subjects were instructed to either (1) remember faces
and ignore scenes (Face condition), (2) remember scenes
and ignore faces (Scene condition), or (3) passively view
both faces and scenes (Passive condition). Each trial started
with the successive presentation of two face and two scene
pictures, in pseudo-random order (with order counterbal-
anced across trials). Each image was presented for 800 ms,
followed by a blank screen for 200 ms. Presentation of these
stimuli was followed by a 3-s delay period, after which
a probe stimulus was presented for 1600 ms. The probe
stimulus was always a face image for the Face condition
and a scene image for the Scene condition, and for both of
these conditions participants were instructed to indicate

via left/right button press if the probe image was present in
the set of images presented at the beginning of the trial. For
the Passive condition, the probe stimulus was an arrow and
participants were instructed to press either the left or right
button in accordance with the direction of the arrow. Pre-
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sentation of the probe stimulus was followed by a jittered
fixation period of between 2 and 10 s, with a distribution
determined by an optimal sequencing program (optseq2)
designed to maximize estimation efficiency (Dale, 1999).

The task used here was modified from a paradigm used
previously in adults (Gazzaley et al., 2005a,b). The delay
period in this study was considerably shorter (3 s rather
than 7 s) and the probe period was slightly longer (1.6 s
rather than 1 s). These modifications were intended to ren-
der the working memory task easier for children, and to
limit the amount of time that they needed to stay still in
the scanner.

In addition to the main face-scene working memory
task, participants also performed a face-scene functional
localizer task. The purpose of this task was to localize the
FFA and PPA – or, more specifically, FFA and PPA voxels
involved in face or scene working memory – in each indi-
vidual subject. In the localizer task, participants were pre-
sented with alternating 20-s blocks of face or scene stimuli
(10 blocks of each type) and were instructed to attend to the
stimuli and press a button whenever the current stimulus
repeated the immediately preceding stimulus.

2.3. Long-term memory testing

Following completion of the fMRI task, participants
were given a surprise recognition memory test outside
the scanner. The purpose of this was to test whether the
attentional instructions influenced long-term retention of
to-be-remembered versus to-be-ignored items differently
in adults and children. The test was comprised of 192
images (96 faces and 96 scenes), half of which had been
seen during the fMRI session. Images were presented on
a computer screen and participants were instructed to
respond using a 4-point scale whether they had seen the
image previously and their confidence. Stimuli that had
been used as probes in the fMRI task were not used in the
long-term memory test. Previously viewed stimuli in the
memory test were taken equally from each condition in
the fMRI task (Face, Scene, Passive).

2.4. Scan procedure

Imaging was performed using an 8-channel phased-
array coil on a 3-T Siemens Trio MRI scanner (Siemens
Medical Solutions, Erlangen, Germany) at the University of
California at Davis Imaging Research Center (Sacramento,
CA). Children were introduced to the scanner environment
with a mock scanner, where they were trained to lie still.
Prior to fMRI data acquisition, all participants were pro-
vided with explicit task instructions. Task stimuli were
presented using Presentation software (Neurobehavioral
Systems, Inc.), and were projected to a screen, which par-
ticipants could view from within the scanner by means of a
mirror. Participants responded via button box, held in the
right hand. Inside the scanner, but prior to scanning, par-

ticipants practiced using the button box to respond to a set
of sample problems.

After acquisition of a T2 localizer scan, four functional
runs were collected (TR = 2000 ms, TE = 25 ms, 34 axial
slices, no interslice-gap, 3.4 mm × 3.4 mm × 4 mm voxels,
ve Neuroscience 1 (2011) 175–186

flip angle = 90◦, field of view = 220 mm), including three
runs of the working memory task and one run for the
localizer task. A gradient-echo echo-planar pulse Prospec-
tive Acquisition Correction (3D-PACE) sequence was used
to minimize motion artifacts by prospectively adjust-
ing scan parameters throughout a run on the basis of
real-time assessment of head motion (Siemens Medical
Solutions) (Thesen et al., 2000). Four volumes from the
start of each functional scan were removed from analy-
sis to account for magnetic field equilibration. Following
the functional scans, high-resolution three-dimensional T1
MPRAGE anatomical images were acquired.

2.5. fMRI data preprocessing and analysis

FMRI data were analyzed using SPM5 (Wellcome
Department of Cognitive Neurology, London, UK). Func-
tional volumes from each participant were corrected
for interleaved slice acquisition, and then were trans-
lated using a rigid-body motion correction. Functional
images were then normalized to an EPI template using
a 12-parameter affine transformation and resampled to
3 mm × 3 mm × 4 mm voxels. The SPM EPI template has
been validated for use in normalization of brain volumes for
children aged 6 and up (Burgund et al., 2002). After normal-
ization, functional images were smoothed using an 8 mm
full-width at half maximum isotropic Gaussian kernel.

Statistical analyses were performed using the general
linear model in SPM5. For the localizer task, separate block
regressors for the face and scene blocks were convolved
with SPMs canonical hemodynamic response function
(HRF), and then fit to each subject’s data to obtain param-
eter estimate (beta) images for each condition. Face and
Scene beta images were then contrasted, and these contrast
images submitted to group-level analysis, in order to iden-
tify group maxima within right FFA (for Faces > Scenes) and
within left and right PPA (for Scenes > Faces). For each sub-
ject, the local maximum nearest the group FFA maximum
(42, −51, −20) was identified as the center of a subject-
specific FFA ROI. Similarly, the local maxima nearest the
group PPA maxima at (−24, −48, −12) and (27, −51, −12)
were identified as centers of subject-specific left and right
PPA ROIs. In all cases, subject-specific ROIs were defined
as spheres that included the center voxel along with the
surrounding six voxels.

For the main task, data analysis was conducted using a
finite impulse response (FIR) model in SPM5. This choice
was dictated by the need to isolate cue-related activation
(in which visual stimuli were similar across conditions, but
attentional demands differed) from probe period activation
(in which the visual stimulus varied as a function of con-
dition). The FIR model does not convolve the underlying
neural model with an HRF. Instead, it creates a series of stick
functions for each event (spanning multiple timepoints)
and then obtains a parameter estimate for each timepoint,
for each condition. Our FIR model included 8 timepoints,

spanning the 16 s after the start of each correct trial. In
our examination of cue-related activation, we restrict our
analysis to the third FIR timepoint (4–6 s), which should
correspond to the peak of the BOLD response associated
with the appearance of the cue stimulus, for children and
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Table 1
Accuracy and response time results for Adults and Children. Standard errors are shown in parentheses.

Group Accuracy (%) Response time (s)
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Scene Passive Fa

Adults 91.1 (2) 99.7 (0) 87
Children 77.5 (4) 99.6 (0) 75

dults (Richter and Richter, 2003). We also report activa-
ion at the sixth timepoint as a proxy for probe-related
ctivation. The advantage of the FIR approach over the
tandard convolution with a canonical HRF is that the esti-
ate of cue-related activation (i.e. FIR timepoint 3), which

epends only on data obtained between 4 and 6 s post-
nset, cannot be affected by activation induced by the
ubsequent probe, which appears at 7 s post-onset.

In addition to the task conditions, six parameters,
escribing participants’ motion, were also included in the
odel. The FIR model was used for both exploratory whole-

rain as well as ROI analyses. For single-subject voxelwise
nalyses, beta images were obtained for each FIR timepoint,
or each condition, and contrast images were formed as
ifferences between these beta images. For a given con-
rast and timepoint of interest, appropriate single-subject
ontrast images were submitted to a T-test to obtain a
roup contrast image and associated T-map. These T-maps
ere thresholded at p < .001 (uncorrected), with an extend

hreshold of k > 10 voxels, to produce cluster activation
mages.

Functional ROIs of the FFA and PPA were obtained from
he localizer task, as described above. Additional func-
ional ROIs were obtained based on contrast activation at
imepoint 3 of the FIR analysis for the face-scene work-
ng memory task. For each ROI, data were averaged across
ll voxels in the region to produce a single timeseries per
egion. These ROI timeseries were then submitted to FIR
nalysis, as above, producing a single parameter estimate
beta value) per FIR timepoint per condition per region.
eta values corresponding to the third timepoint were sub-
itted to second-level analyses (ANOVAs) within SPSS.

. Results

.1. Behavioral performance

To assess participants’ performance on the working
emory task, we submitted accuracy scores (Table 1) to
3 (condition: Face, Scene, or Passive) × 2 (group: Adult or
hild) mixed analyses of variance (ANOVA). Overall, chil-
ren performed worse than adults (F1,28 = 10.1, p = .004, 84%
ersus 93% correct, respectively), though performance of
oth groups was at ceiling (>99%) for Passive trials. There
ere no significant differences in performance between

ace and Scene conditions, for either group. There were
ignificant positive correlations between age and WM per-
ormance in children for both the Face (r2 = .20, p < .05) and

cene (r2 = .43, p = .004) conditions (Fig. 2).

Response times were analyzed in a similar manner.
dults, with a mean response time of 820 ms, were
arginally faster than children (p = .06), with a mean

esponse time of 890 ms. The group × condition interaction
Scene Passive Face

.94 (.03) .56 (.02) .95 (.04)
1.03 (.04) .63 (.02) 1.02 (.03)

was not significant (F < 1). For both groups, responses to
Passive trials were faster than responses to either Face or
Scene trials (p < .001).

To assess participants’ long-term memory, we submit-
ted familiarity ratings (Table 2) to a 4 (condition: Attended,
Passive, Ignored, or New) × 2 (group) mixed ANOVA, sepa-
rately for scenes and faces. For scenes, the overall effect
of condition was highly significant (F3,84 = 15.3, p < .001),
but the group × condition interaction was not (p = .24).
Both adults and children indicated the highest level of
familiarity with to-be-attended scenes, an intermediate
level of familiarity with passively viewed scenes, and the
least familiarity with to-be-ignored scenes (i.e. scenes that
had been presented on Face trials). Both groups rated
to-be-attended and passively viewed scenes, but not to-
be-ignored scenes, as significantly more familiar than
new scenes (adults: p’s < .001, children: p’s < .05). Notably,
the effect of attention on scene memory (i.e. Attended
Scene − Ignored Scene) was positively correlated with age
in the child group (r2 = .32, p = .03), as were raw memory
scores for the Attended Scene (r2 = 40, p = .01) and Pas-
sive Scene (r2 = 32, p = .03) conditions. Adults demonstrated
a stronger effect of top-down enhancement (Attended
Scene − Passive Scene) on scene memory than did children
(p = .04), but there was no appreciable difference in the
effects of top-down suppression (Passive Scene − Ignored
Scene).

For faces, there was again a significant overall effect of
condition (F3,84 = 8.3, p < .001) and no interaction between
condition and group (F < 1). Both children and adults
reported greater familiarity for to-be-attended faces than
for passively viewed faces (adults: p = .006, children:
p = .02) or ignored (adults: p = .13, children: p = .04). How-
ever, for both groups, familiarity ratings for old faces were
not significantly different from familiarity ratings for new
faces, suggesting negligible long-term retention of the face
stimuli (despite the fact that working memory accuracy
was well above chance).

3.2. Whole-brain comparisons: attention to scenes
versus attention to faces

Initial exploratory analyses focused on the contrast
between the Scene and Face conditions. Our primary inter-
est is in cue-related activation (i.e. FIR timepoint 3), though,
as a point of comparison, we also report probe-related acti-
vation (i.e. FIR timepoint 6).

During the cue period, bilateral PHG and bilateral pre-

cuneus were more active when participants were cued to
attend to the scenes than the faces (Table 3A and Fig. 3A,
left). There were no significant group differences with
respect to the Scene–Face contrast, as revealed by a whole-
brain two-sample T-test. All of the regions activated by
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proved
he grou
Fig. 2. Regression of working memory performance with age, showing im
age in children, and adult-like performance among the older children in t

Scene–Face during the cue period were also activated by
Scene–Face at the probe (Fig. 3B), which produced addi-
tional activation extending in to the lingual and middle
occipital gyri.

When participants attended to faces rather than scenes,

the only significant cue-related activation was observed
in the posterior cingulate gyrus (Table 3B). There were
no significant group differences with respect to this con-
trast. While there was no activation of the fusiform gyrus

Table 2
Average familiarity ratings from the long-term memory test. Parentheses show s

Group Scene

Attend Passive Ignore New

Adults 2.71 (.14) 2.45 (.13) 2.25 (.14) 2.23 (.11)
Children 2.46 (.14) 2.40 (.13) 2.26 (.14) 2.23 (.11)
performance on scene (A) and face (B) working memory as a function of
p.

associated with the cue, this region was activated by the
Face–Scene contrast for the probe.

3.3. PPA and FFA: targets of top-down modulation
To focus on the probable targets of top-down modula-
tion in this task, we next examined the PPA and FFA ROIs
obtained from the functional localizer task. Of particular
interest is whether and to what extent the effects of atten-

tandard error.

Face

Attend Passive Ignore New

2.1 (.09) 2.47 (.11) 2.58 (.09) 2.69 (.07)
2.77 (.09) 2.62 (.12) 2.64 (.10) 2.75 (.07)
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Table 3
Activation clusters associated with Scene versus Face contrasts. All clusters that survive thresholding at p < .001 (uncorrected), with a 10-voxel extent
threshold, are reported. In addition, FWE-corrected p-values are reported for each cluster. PHG = parahippocampal gyrus, LG = lingual gyrus, SOG = superior
occipital gyrus, MOG = middle occipital gyrus, SPL = superior parietal lobe, MFG = middle frontal gyrus, IFJ = inferior frontal junction, MTG = middle temporal
gyrus, and STG = superior temporal gyrus.

Region x, y, z Z (voxel) cluster size (# voxels) p-Value (corr. cluster)

(A) Scene > Face (cue) All Subjects
Left PHG −27, −45, −16 4.73 103 .001
Right PHG 27, −36, −16 3.79 51 .036
Left precuneus, SPL −15, −69, 52 4.51 253 <.001
Right SOG, MTG 24, −57, 24 4.43 213 < .001
Left posterior cingulate −15, −54, 16 4.40 40 .08
Left MFG −45, 33, 16 3.58 36 .11

(B) Face > Scene (cue) All Subjects
Posterior cingulate gyrus −3, −51, 28 3.92 92 .002
Right STG 60, −51, 8 3.98 44 .06

(C) Scene > Passive (cue) All Subjects
Left precuneus, SPL −15, −69, 52 5.60 684 <.001
Right precuneus, SPL 20, −60, 56 5.51 660 <.001
Left IFJ (MFG/precentral) −36, 0, 36 4.92 370 <.001
Right IFJ (MFG/precentral) 39, 3, 36 4.67 302 <.001
Left MOG/MTG/fusiform −48, −63, −4 4.51 133 .001
Left MFG, IFG −36, 27, 24 4.61 44 .02

(D) Face > Passive (cue) All Subjects
Left precuneus, SPL −24, −69, 32 4.58 248 <.001
Right precuneus, SPL 27, −69, 40 4.04 207 <.001
Left IFJ (precentral/MFG) −42, −3, 36 4.14 89 .005
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Right IFJ (precentral/MFG) 39, 0, 40 4.8
Left MOG/MTG/fusiform −51, −63, −4 5.0
Right MTG/MOG/fusiform 48, −54, 8 4.4

ion on activity modulation, previously observed in adults,
s present in children.

Within bilateral PPA (Fig. 4A), both children and adults
xhibited attentional modulation during the cue period,
xhibiting greater activation for Scene trials than for
ace trials (Fig. 4B; adults: F2,28 = 11.9, p < .001; children:
2,28 = 3.2, p = .05; 87% of adults (13/15) and 66% of children
10/15) exhibited this pattern). Adults also demonstrated
ignificant enhancement (Scene > Passive), and children
emonstrated marginal enhancement, but only in left PPA
adults: F1,14 = 8.1, p = .01; children: F1,14 = 4.2, p = .06; 87%
f adults versus 80% of children exhibited this pattern).
here was no significant condition × group interaction in
ither left or right PPA (F’s < 1). Neither group exhibited sig-
ificant attentional suppression (Passive > Face) of the PPA.

To investigate development of top-down modula-
ion, we probed for correlations between PPA acti-
ation and age in children. Significant age-related
ncreases were observed for both top-down modulation
Scene–Face; r2 = .28, p = .04) and top-down enhancement
Scene–Passive; r2 = .31, p = .03). These effects were driven
y a highly significant age-related increase in PPA acti-
ation for Scene trials (r2 = .56, p = .001) in the absence
ge-related changes for Face or Passive trials (Fig. 4C).

In children, in addition to correlating with age, PPA acti-
ation on Scene trials also correlated with performance,
or both scene working memory (r2 = .46, p = .006; Fig. 5A)

nd scene long-term memory (r2 = .49, p = .004; Fig. 5B). In
dults, by contrast, although the trends were in the same
irection as in children, there were no significant correla-
ions between PPA activation and either working memory
r long-term memory performance.
202 <.001
203 <.001
136 <.001

As with PPA, investigation of the right FFA ROI con-
firmed the success of the localizer task, insofar as there
was a large effect of condition (Face > Scene, Passive) associ-
ated with the probe, in both children and adults. However,
in the FFA, neither group demonstrated an effect of atten-
tional modulation during presentation of the cue stimulus
(adults: F2,26 < 1, children: F2,26 = 1.1). Nevertheless, for
adults, though not for children, there was a significant
correlation between face working memory performance
and FFA cue-related activation for the Face–Scene contrast
(r2 = .21, p = .04), demonstrating that top-down modulation
of FFA did occur, at least in the better-performing adult
participants.

3.4. Sources of top-down modulation

To identify additional regions that were modulated by
attentional demands during the cue period, we examined
the Scene > Passive and Face > Passive contrasts across all
subjects (Table 3C and D and Fig. 6A). Activation in bilat-
eral inferior frontal junction (IFJ), and in bilateral SPL was
observed for both contrasts. In addition, activation with a
left DLPFC peak (−36, 27, 24), spanning the inferior frontal
sulcus, was observed for Scene > Passive across all subjects.

We next probed explicitly for differences between
adults and children in top-down control by submitting
Scene > Passive and Face > Passive cue contrast images from

both groups to a voxel-wise, two-sample t-test. No sig-
nificant clusters emerged from this analysis (we note,
however, that when the threshold was lowered to p < .005,
a cluster in left lateral PFC (−48, 18, 8) was observed for
Scene > Passive).
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ts (N = 3
trast act
Fig. 3. Scene versus Face contrast images for the entire group of participan
(A) Contrast activation associated with the cue (FIR timepoint 3). (B) Con

Because DLPFC has been previously identified as a pri-
mary locus of top-down control (Gazzaley et al., 2007), we
selected the DLPFC ROI (obtained from the Scene > Passive
contrast across all subjects) for further analysis. First, we
probed for a group × condition interaction associated with
the cue. Although there was a trend toward greater acti-
vation for scenes in adults than in children, this effect was
not significant (p = .2). Next, the relation between DLPFC
function and age in the child group was examined by
correlating cue-related Scene–Passive contrast values with
age (Fig. 6B). This correlation proved to be highly sig-
nificant (r2 = .37, p = .008): older children engaged DLPFC
more strongly during attention to scenes than younger chil-
dren.

Although session order was counterbalanced in our
task, across subjects and between groups, we sought
to ensure that none of our reported results might be
due to session order effects. Thus, we conducted a
follow-up analysis testing for correlations between ses-
sion order (represented as the position of the Scene

session) and each of our reported behavioral and brain
measures. Only long-term memory for scenes was even
marginally correlated with session order (p = .09); for all
other reported measures, there was no correlation (all
p’s > .4).
0), thresholded at p < .001 (uncorrected) with a 10-voxel extent threshold.
ivation associated with the probe (FIR timepoint 6).

4. Discussion

Evidence from the current study suggests that top-down
enhancement of the PPA develops over the course of mid-
dle childhood. Between the ages of 8 and 14, increasing
age was associated with increasing activation of bilat-
eral PPA, but only when the task goals required attending
to scene stimuli. Replicating prior studies, adults demon-
strated strong enhancement of PPA when attention to
scenes was required. While younger children appear to
be markedly different than young adults, in terms of their
capacity for top-down modulation of PPA, these differences
have largely if not entirely disappeared by the age of 14.
However, a more precise characterization of the develop-
mental trajectory of PPA enhancement will require further
study, with more individuals from the age range in question
and, ideally, longitudinal tracking of individuals.

PPA activation in children was correlated both with
scene working memory and long-term memory for
attended scenes. Because all of these variables were cor-

related with age among the children, we cannot conclude
definitively that PPA activation is causally related to scene
memory. A larger sample would be needed to test whether
the brain-behavior correlations hold after regressing out
the effects of age.
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Fig. 4. (A) Subject-specific parahippocampal place area (PPA) regions of interest obtained from the localizer task. (B) BOLD activation (finite impulse
r of inter
w obe-rel
o effect. (
e correlat

s
e
f
p
e
o
f
a
t
o
e
r

F
f

esponse) timecourses from parahippocampal place area (PPA) regions
ere assessed at timepoints 3 and 6, corresponding to cue-related and pr

r ‡ (Scene > Face, Passive). Parentheses indicate a marginally significant
xperimental condition. Trendline indicates the presence of a significant

Some prior studies have observed top-down suppres-
ion as well as top-down enhancement of PPA (Gazzaley
t al., 2005a,b). We observed enhancement of PPA, but
ailed to observe significant suppression. The lack of sup-
ression effects could be due to differences, relative to the
arlier studies, in the instructions provided to participants
r in participants’ strategies. But examination of the results
rom another recent study (Rissman et al., 2009) suggests

n alternative explanation – that suppression happens later
han enhancement – too late, in fact, to be detected using
ur short-delay-period design. In an earlier study (Gazzaley
t al., 2005a,b), which involved a delay period of seven
ather than 3 s, it was observed that suppression effects

ig. 5. (A) Correlation between working memory performance and PPA activatio
or attended scenes and Scene trial PPA activation. All activation values are cue-re
est, for adults and children. Statistical differences between conditions
ated activation peaks. Significant effects are marked with † (Scene > Face)
C) Bilateral PPA activation (cue-related) versus age in children, for each
ion (see text).

were entirely absent during cue encoding and early delay,
and only became apparent in association with the later part
of the delay period. There is a hint of this in data from
the current study; for both left and right PPA, numerical
suppression effects are observed in adults and children at
later timepoints, but this effect is not significant and is con-
founded with the appearance of the probe stimulus. Thus,
in order to examine development of top-down suppression

abilities, a follow-up investigation involving longer delay
periods will be required.

Comparing the developmental pattern observed here in
children to the pattern of age-related decline observed pre-
viously in older adults is complicated by the lack of any

n, for Scene trials. (B) Correlation between long-term memory responses
lated, taken from the third FIR timepoint.
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< .001 (u
) Correl
Fig. 6. Contrast images for Scene/Face > Passive (cue), thresholded at p
Scene > Passive (yellow) and Face > Passive (red), with overlap in orange. (B

clear suppression effect for either age group in the current
study. It is not possible to determine, based on the present
results, whether and to what extent children exhibit a sup-
pression deficit similar to that seen in older adults. Given
prior behavioral evidence that children (Harnishfeger and
Bjorklund, 1994) as well as older adults (Hasher et al.,
1991) are more susceptible to interference than young
adults, it remains likely that such a deficit exists. How-
ever, it appears from the current results that young children
differ from older adults in one important respect: where
older adults demonstrate enhancement at a level similar
to young adults, young children do not.

Although we found that adults with better work-
ing memory performance did modulate FFA, we did not
observe reliable top-down modulation of FFA across the
whole group. This could mean that FFA is less suscepti-
ble to top-down modulation than PPA—perhaps because
face recognition is a more automatic process than scene
examination. Our FFA ROI was clearly sensitive to the pre-
sentation of faces, so it seems unlikely that the lack of effect
is due to the region selection. It is the case that, in prior
studies that looked at both PPA and FFA, top-down mod-
ulation of FFA has been weaker and less reliable than that
of PPA (Gazzaley et al., 2005a,b); in fact, in a number of
previous studies using a similar task paradigm, the focus
of investigation has been limited to PPA for this reason
(Gazzaley et al., 2008; Rissman et al., 2009). Thus, the lack

of an effect in FFA is perhaps not very surprising or informa-
tive. A better understanding of the conditions under which
robust and reliable modulation of FFA can be produced
should facilitate further investigation of the development
of this capacity.
ncorrected) with a 10-voxel extent threshold. (A) Separate effects of
ation of DLPFC selective enhancement (Scene − Passive cue) with age.

In children, the age-related increase in PPA enhance-
ment was matched by an age-related increase in the
selective activation (for attention to scenes versus pas-
sive viewing) of lateral PFC. This finding is consistent
with many prior studies on the development of cognitive
control, which have repeatedly demonstrated a reduction
in selective activation of lateral PFC in children relative
to adults (e.g. Konrad et al., 2005; Kwon et al., 2002;
Crone et al., 2006a,b). Other regions commonly associ-
ated with top-down control, including IFJ (Derrfuss et al.,
2004) and SPL (Yantis and Serences, 2003; Silvanto et al.,
2009), were similarly activated across adults and chil-
dren.

As in prior work from our group on the development
of working memory and cognitive control processes, we
found that children age 8–13 generally engage the same
set of brain regions as adults, or a subset thereof, rather
than engaging an entirely different network (Crone et al.,
2006a,b; Paz-Alonso et al., 2008). In the one study for which
we have observed important qualitative differences in acti-
vation between children and adults on a cognitive control
paradigm (Bunge et al., 2002), we interpreted this finding,
together with supporting evidence, as reflecting a shift in
cognitive strategy. In the present study, as in others (Scherf
et al., 2006; Crone et al., 2006a,b; Ofen et al., 2007) we
observed quantitative differences in the pattern of acti-
vation in lateral PFC and in key regions involved in the

task. These findings are broadly consistent with the idea
that strengthening of long-range connections between PFC
and other brain regions results in more effective top-down
modulation of task-related processing (Fair et al., 2007;
Lebel et al., 2008).
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Developmental changes in neural activation patterns
ay be related to concurrent changes in brain structure.

hanges in cortical thickness occur throughout childhood,
ith different brain regions demonstrating different devel-

pmental trajectories (Shaw et al., 2008). DLPFC, which
ppears to be a major locus of top-down modulation,
emonstrates particularly delayed maturation in terms of
ortical thickness (Gogtay et al., 2004). Over the course of
iddle childhood, myelination processes result in increas-

ng white matter volume (Giedd, 2004) and increasing tract
oherence (Barnea-Goraly et al., 2005). It is highly likely
hat these white-matter changes have a positive impact
n the potential for top-down modulation, and help to
xplain the reduced modulation observed in younger chil-
ren. Further investigation of the link between structural
nd functional development is an important goal for future
esearch.

In summary, the present results suggest that top-down
odulation of PPA, mediated by lateral PFC, develops

ver the course of middle childhood. Attention-related
refrontal activation and the associated enhancement of
PA activation are reduced in younger children compared
ith older children and young adults. Notably, although
e are unable to draw firm conclusions about top-down

uppression in the current study, the observed reduc-
ion of top-down enhancement in younger children also
ontrasts with the suppression-specific deficit previously
bserved in older adults, indicating that the development
f top-down attentional modulation may follow a different
rajectory than its eventual decline.
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